学校首页    English    
学院要闻

哈工程—杜伊斯堡埃森大学程船舶与海洋力学研讨会

  发布时间:2023-08-14  浏览次数:1409

---------------会议简介---------------

本次研讨会由哈尔滨工程大学船舶工程学院德国杜伊斯堡埃森大学船舶与海洋工程研究所共同举办,旨在为青年学者创建新的平台,共同探索船舶与海洋工程中的流体力学、流固耦合等关键问题,分享最新研究成果,促进中德、中欧在船舶与海洋工程领域的学术与技术交流。

---------------会议时间、地点---------------

20238159:00-17:30;船海楼1013会议室

---------------联络人---------------

船舶工程学院崔璞 18846459106

---------------会议日程---------------


* 由于行程原因,Bettar Ould El MoctarAndrea Peters的报告将由Hemant Sagar代为进行。UDE学者访问时间为15-17日,欢迎各位师生线下交流。

---------------专题报告---------------

1.Introduction to University of Duisburg-Essen

德国杜伊斯堡-埃森大学(UDE)介绍

内容简介:杜伊斯堡-埃森大学(UDE)位于鲁尔大都市区中心,是一所包含理、工、文、医类学科的综合性研究型大学,规模位居德国前列,与全球 100 多所大学保持合作伙伴关系,开展400 多项国际合作项目。杜伊斯堡-埃森大学船舶与海洋工程研究所 (ISMT) 致力于数值和实验流体力学以及流固耦合领域的研究,旨在培养国际认可的流体力学、船舶设计、船舶动力、海洋结构物方向的本科和硕博士研究生。


2. Revealing the Essence of Cavitation bubbles and Their Destructive Effects in Hydro-Machinery

空化气泡及其对水力机械毁伤效应本质研究

Abstract: The presentation will cover the basics of the well-known problem occurring in hydro machinery “cavitation”. The aim of the presentation will be to deliver the in-depth insight into the fundamentals of the cavitation, its severity in the direction of its destructive mechanism. For this purpose, the first part of the presentation will cover the numerical and experimental studies of the dynamics of a cavitating bubble near a resilient metal surface. The second part of the presentation will cover the advanced approach correlating to the hydro machinery such as pumps, impeller and turbine. To achieve this the experiments and simulation were performed for bubble collapsing between non-parallel plates at various positions. The initial position of the bubble and, thus, the boundary conditions significantly influenced the bubble’s dynamics.


3. Physics of bubble jetting phenomena

气泡射流的物理特性

Abstract: The application of bubbles is extensive, and relevant fundamental research holds significant engineering value and academic significance. The nonlinear dynamic behavior of bubbles, particularly high-speed jetting, is highly dependent on the boundary conditions and the physical characteristics of the flow field. This report aims to present the latest research findings concerning the physical characteristics of bubble jets, encompassing aspects such as gravitational effects, proximity to solid boundaries, interactions with movable boundaries, as well as variations in bubble jet characteristics near liquid-liquid fluid interfaces.

4. Numerical Methods for Hydrodynamic and Hydroelastic Responses of Moored Offshore Structures

海洋结构物锚泊系统水动力和水弹性响应的数值方法

Abstract: Predicting wave-induced motions and loads on ships and offshore structure is often part of their designs, and numerical methods play a crucial role in such a content. This presentation covers the state-of-the-art numerical tools including potential-flow and viscous-flow solvers coupled with mooring dynamics, mechanical connections, and structural dynamics. Aiming to account for the nonlinear fluid-structure interaction, mooring dynamics, and associated viscous flow effects, a coupled mooring-viscous flow solver is developed by solving the equations governing mooring dynamics, six-degree-of-freedom nonlinear body motions, and fluid dynamics in a coupled manner. The fluid-structure interaction is considered using both a conventional Finite-Volume-Finite-Element (FV-FE) approach and a novel self-contained FV-FV method. Validations and applications using the developed solver are demonstrated.

5. A novel regularized multiple-relaxation-time Shan-Chen multiphase lattice Boltzmann model

一种新型正则多重弛豫时间Shan-Chen多相格子Boltzmann模型

Abstract: The Shan-Chen lattice Boltzmann model has been widely applied for the multiphase/multicomponent flows, such as phase separation, cavitation and boiling.  However, there exist several drawbacks that hinder its success in the accurate and stable simulations in these physical scenarios, such as numerical stability for high density ratio and high Reynolds number, independent adjustment of surface tension in contrast with the density ratio. In this work, a regularized multiple-relaxation-time Shan-Chen multiphase lattice Boltzmann model has been proposed. Due to the multiple-relaxation-time regularization procedure, the robustness has been guaranteed for the high density ratio and low viscosity case. By incorporating a source term, the surface tension can be successfully adjusted independently in contrast with the density ratio.

6. Numerical prediction of cavitation-erosion

空蚀的数值预测

Abstract: This presentation will cover the developed numerical method to predict the cavitation induced erosion. The erosion model is based on the microjet phenomenon and its development. An Euler-Lagrange method to simulate cavitation and predict cavitation erosion is presented. The method considers bubble motions as well as growth and collapse of a discrete number of single, spherical bubbles. A two-way coupling approach is implemented so that both liquid phase and vapour bubbles interact with each other. In contrast to Euler-Euler methods, this allows a more detailed simulation of bubble transport and dynamics.

7. A High-Accuracy TENO-SPH Method and Its Application in Fluid Dynamics

一种高精度TENO-SPH方法及其在流体动力学中的应用

内容简介:作为一种常用的无网格粒子法,光滑粒子流体动力学(SPH)长期受到精度低问题的困扰。为了提升SPH的精度,基于黎曼SPH方法,引入了网格方法中的TENO重构算法。由于TENO重构常常需要等间距的点构造模板,而SPH中的粒子是随机分布的,因此我们提出了SPH框架下一种新的模板点重构方法,并采用修正的核梯度近似算法。数值结果表明,所提出的TENO-SPH比传统黎曼SPH方法具有更高的精度,在模拟涉及激波和小尺度结构的可压缩流、不可压缩涡流和自由表面流中均有较好的效果。

8. Experimental investigation of underwater metal jet induced by melting of cone-shaped metal plate

反锥形金属结构水下熔变射流特性实验研究

内容简介:熔变射流具有很强的侵彻能力,在石油钻采、矿产开采、隧道建设等民用领域得到了广泛的应用。然而,关于熔变射流在水下的试验研究较少。为此,本课题依托江西省水下特种实验基地进行了系列熔变射流水下实验。实验在一个具有钢筋混凝土结构的水箱中进行,水箱中布放有压力传感器以记录压力时历曲线,并可通过高速摄像机记录复杂的流固耦合现象。试验中采用了光滑平板和加筋板两种不同的边界结构,边界上布放有应变传感器,可以记录边界在实验过程中的结构响应。同时还利用激光三维扫描仪测量了实验后边界的变形。通过对实验数据的分析,可以研究水下熔变射流的近场载荷特性,探索边界结构的损伤机理。

  

---------------承办---------------

哈尔滨工程大学船舶工程学院

教育部船舶与海洋工程技术国际合作联合实验室

科技部船舶与海洋工程力学国家级国际联合研究中心

哈尔滨工程大学船舶工程学院青年科学技术协会





0451-82519910
版权所有 © 2015 哈尔滨工程大学船舶工程学院    管理维护:船舶工程学院
地址:哈尔滨市南岗区南通大街145号哈尔滨工程大学船海楼    技术支持:信息化处    邮编:150001
官方微信平台